PHYS221
 Uncertainty notes-Torque Experiment

Let's assume you have measured the following measurements (see fig. 9-2 of procedure for torque notation):
Left hand side of fulcrum-

Right hand side of fulcrum -
mass $=($ masses + hanger $)=(0.200+0.01660) \mathrm{kg}=\mathbf{0 . 2 1 6 6 0} \mathbf{~ k g}$ distance from fulcrum $=35.6 \mathrm{~cm}=\mathbf{0 . 3 5 6} \mathbf{~ m}$
$($ masses + hanger $)=(0.300+0.01650) \mathbf{k g}=\mathbf{0 . 3 1 6 6 5} \mathbf{~ k g}$ distance from fulcrum $=24.4 \mathrm{~cm}=\mathbf{0 . 2 4 4} \mathbf{~ m}$

These measurements yield the following torques, respectively;

$$
\begin{aligned}
\tau_{c c} & =\left(0.21666 \mathrm{~kg} \times 9.8000 \frac{\mathrm{~m}}{s^{2}} \times 0.356 \mathrm{~m}\right)=0.75588 \mathrm{~N}^{*} \mathrm{~m}, \text { and } \\
\tau_{c} & =-\left(0.31665 \mathrm{~kg} \times 9.8000 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \times 0.244 \mathrm{~m}\right)=-0.75717 N^{*} \mathrm{~m}
\end{aligned}
$$

We must now determine the uncertainty of the torque using the following uncertainties:

We are using a meter stick with a readability of 1 mm and an uncertainty- $\delta r=0.5 \mathrm{~mm}=0.05 \mathrm{~cm}$ However, since there are two clamps there is an uncertainty associated with both and thus we will use an uncertainty of $\delta r=\sqrt{0.05^{2}+0.05^{2}} \mathrm{~cm}=\sqrt{2} \times 0.05 \mathrm{~cm}=0.07 \mathrm{~cm}$

Uncertainty of r use $0.07 \mathrm{~cm} \quad$ For the mass uncertainty we will use 1% of total mass
(Please note that this value for mass uncertainty is an approximate method only and there are several different ways to achieve a more precise value, e.g., using a balance to measure individual masses or by using a statistically determined mass uncertainty)

Since torque is defined as force times distance (i.e., $\tau=F \times d$) you must use uncertainty of multiplied quantities (see appendix -pages A-6 through A-10). Thus we see

$$
\frac{\delta \tau}{\tau}=\sqrt{\left(\frac{\delta F}{F}\right)^{2}+\left(\frac{\delta r}{r}\right)^{2}}=\sqrt{\left(\frac{\delta(m g}{m g}\right)^{2}+\left(\frac{\delta r}{r}\right)^{2}} .
$$

Since force (weight) is mg and we will assume g is a constant (with an ignorable uncertainty), we see

$$
\frac{\delta \tau}{\tau}=\sqrt{\left(\frac{\delta(m g)}{m g}\right)^{2}+\left(\frac{\delta r}{r}\right)^{2}}=\sqrt{\left(\frac{\delta m}{m}\right)^{2}+\left(\frac{\delta r}{r}\right)^{2}} . \quad \Rightarrow \quad \frac{\delta \tau}{\tau}=\sqrt{\left(\frac{\delta m}{m}\right)^{2}+\left(\frac{\delta r}{r}\right)^{2}} \quad \mathrm{Eq}-1
$$

Please note the equation labove is simply another way of saying that the fractional uncertainty of quantities that are multiplied together is obtained by first converting uncertainties to a fraction (or percent) and then adding those uncertainties (in this case we are adding in quadrature).

PHYS221
 Uncertainty notes-Torque Experiment

Examining the measured values above, we see for counterclockwise values;

$$
\frac{\delta \tau_{c c}}{\tau_{\infty}}=\sqrt{\left(\frac{\delta m_{\infty c}}{m_{c c}}\right)^{2}+\left(\frac{\delta r_{\propto c}}{r_{c c}}\right)^{2}} \Rightarrow \frac{\delta \tau_{c c}}{0.75588 N-m}=\sqrt{\left(\frac{(2.17 \mathrm{~g})}{216.66 \mathrm{~g}}\right)^{2}+\left(\frac{(0.07 c m)}{35.6 c m}\right)^{2}}
$$

Please note that 1% of 216.66 g is 2.17 g

$$
\delta \tau_{c c}=0.75588 N * m \times \sqrt{(0.01)^{2}+(0.0019663)^{2}}=0.75588 \mathrm{~N} * \mathrm{~m} * 0.0101915=0.0077 \mathrm{~N} * \mathrm{~m}
$$

Rounding the uncertainty to one significant figure we see
$\delta \tau_{c c}=0.008 N^{*} m$.
We can thus write counter clockwise torque sum and its uncertainty (i.e., $\tau_{c \infty} \pm \delta \tau_{c c}$) as

$$
(0.75588 \pm 0.008) N * m=(0.756 \pm 0.008) N * m
$$

Repeating the process above for the clockwise torque we see

$$
\frac{\delta \tau_{c}}{0.75717 N * m}=\sqrt{\left(\frac{3.17 \mathrm{~g}}{316.65 \mathrm{~g}}\right)^{2}+\left(\frac{0.07 \mathrm{~cm}}{24.4 \mathrm{~cm}}\right)^{2}}
$$

which yields

$$
\delta \tau_{c}=0.007877 \mathrm{~N} * \mathrm{~m}=0.008 \mathrm{~N} * \mathrm{~m}
$$

We can thus write clockwise torque sum and its uncertainty (i.e., $\tau_{c} \pm \delta \tau_{c}$) as

$$
(-0.757178 \pm 0.008) N * m=(-0.757 \pm 0.008) \mathrm{Nm}
$$

The sum of the torques (including uncertainties) is given by

$$
\Sigma \tau=(0.756 \pm 0.008) N * m+(-0.757 \pm 0.008) N * m
$$

Please note that the uncertainties should be added in quadrature to yield final answer

$$
\Sigma \tau=\left(-0.001 \pm \sqrt{0.008^{2}+0.008^{2}}\right) N * m=-0.001 \pm 0.011 N * m
$$

Writing the uncertainty with one significant figure yields a final answer of

$$
\Sigma \tau=(-0.00 \pm 0.01) N * m
$$

